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SUMMARY 

Conventional high-order schemes with reduced levels of numerical diffusion produce results with spurious 
oscillations in areas where steep velocity gradients exist. To prevent the development of non-physical 
oscillations in the solution, several monotonic schemes have been proposed. In this work, three monotonic 
schemes, namely Van Leer’s scheme, Roe’s flux limiter and the third-order SHARP scheme, are compared 
and evaluated against schemes without flux limiters. The latter schemes include the standard first-order 
upwind scheme, the second-order upwind scheme and the QUICK scheme. All the above schemes are 
applied to four two-dimensional problems: (i) rotation of a scalar ‘cone’ field, (ii) transport of a scalar ‘square’ 
field, (iii) mixing of a cold with a hot front and (iv) deformation of a scalar ‘cone’ field. These problems test 
the ability of the selected schemes to produce oscillation-free and accurate results in critical convective 
situations. The evaluation of the schemes is based on several aspects, such as accuracy, economy and 
complexity. The tests performed in this work reveal the merits and demerits of each scheme. It is concluded 
that high-order schemes with flux limiters can significantly improve the accuracy of the results. 

KEY WORDS High-order schemes Flux limiters Numerical diffusion Unsteady flows Monotonicity 
Finite differences 

INTRODUCTION 

Satisfactory numerical modelling of convection presents a well-known dilemma to the CFD 
engineer. On the one hand, high-order accuracy schemes may lead to unphysical, oscillatory 
behaviour in regions where steep gradients exist. On the other hand, computations based on the 
classical first-order upwind scheme or other low-order schemes’ - 4  often suffer from severe 
inaccuracies due to truncation error. Although, in principle, grid refinement can alleviate this 
latter problem, the necessary degree of refinement is often impracticable for engineering pur- 
p o s e ~ , ~  especially if one is attempting to model three-dimensional turbulent flows. 

Higher-order upwind schemes have been successful in eliminating artificial diffusion while 
minimizing numerical dispersion. In the case of second-order upwinding6 the leading truncation 
error is a third-order derivative term, which could potentially cause oscillations in the solution. 
The quadratic upwind-biased scheme of Leonard,’ known as QUICK (Quadratic Upstream 
Interpolation for Convective Kinematics), has a fourth-order derivative (which is dissipative) as 
the leading truncation error term. However, higher-order dispersion terms may still cause 
overshoots and undershoots in areas where steep gradients of the convected variable exist. 

An early attempt towards developing a high-order monotonic scheme was made by Borris and 
Book,’ who proposed the Flux-Corrected Transport (FCT) scheme. In their procedure, a low- 
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resolution solution is first obtained using a low-order accurate scheme. This initial solution is 
then corrected by adding high-order terms which are limited in order to produce monotonic 
results. Although this sophisticated procedure was later enhanced by Z a l e ~ a k , ~  it is still quite 
complicated and demanding in computer time. lo In his search for the ultimate conservative 
scheme, Van Leer'' developed the Monotonic Piecewise Linear (MPL) scheme. In this second- 
order scheme, which is based on zone averages instead of mesh point values, monotonicity is 
enforced by suitably adjusting the second-order terms. Based on Van Leer's method, Collela and 
Woodwork'2 developed a third-order method using Piecewise Parabolic Monotonic (PPM) 
functions. 

Another class of monotonic schemes has been developed by R o ~ ' ~ , ' ~  and extended by 
Chakravarthy and Osher." These schemes are based on approximate Riemann solutions and 
have been originally developed for the prediction of inviscid compressible flows with strong 
shocks. Similar schemes include the high-resolution schemes of Harten,I6 the E N 0  (Essentially 
Non-Oscillatory) schemes of Shu and O ~ h e r , ' ~ , ' ~  the slope modification method of YangIg and 
the TVD scheme of Wang and Widhopf, 2o to name a few. A new generation of multidimensional 
monotonic convective schemes, based on non-linear characteristics in the normalized variable 
diagram, has been proposed by Leonard." The new scheme, named SHARP (Simple High- 
Accuracy Resolution Program) is a monotonic version of his earlier QUICK scheme. Similar to 
SHARP is the simpler SMART scheme,22 which is based on piecewise linear characteristics. 

While S ~ e b y ~ ~  compared Van Leer's,'' Roe's,'3' l4 and Chakravarthy and Osher's'' schemes 
in several one-dimensional flows, a comprehensive evaluation of various high-order-accuracy 
schemes, with and without flux limiters, in a range of two-dimensional unsteady flows, has not 
been reported in the literature. The goal of the present work is to compare and assess the 
performance of three promising monotonic schemes, namely Van Leer's MPL scheme," Roe's 
flux limiter14 and Leonard's SHARP scheme,21 against three widely used schemes without flux 
limiters. The latter schemes include the classical First-Order Upwind scheme (FOU), the Second- 
Order Upwind scheme (SOU)6 and the QUICK ~ c h e m e . ~  

Four two-dimensional benchmark problems are used to test the various schemes in different 
situations: (i) rotation of a scalar 'cone' field, (ii) transport of a scalar 'square' field, (iii) mixing of 
a cold with a hot front and (iv) deformation of a scalar 'cone' field. The first two problems test the 
ability of the schemes to produce oscillation-free and accurate results in critical convective 
situations. The third problem is less severe, thus allowing for a more realistic comparison of the 
schemes. The final test problem is very severe and fully tests the ability of the schemes to produce 
results without unphysical overshoots and oscillations. The evaluation of the schemes is based on 
several aspects, such as accuracy, economy and complexity. The tests performed in this work 
reveal the merits and demerits of proposed schemes for discretizing convective terms in linear 
problems. 

MATHEMATICAL FORMULATION 

Problem dejnition 

The class of problems considered in this work is the transport of a scalar field in the absence 
of any other physical phenomena except convection, e.g. transport of a non-diffusive tracer 
(Figure 1). Assuming a given flow field, the governing equation in two-dimensional space is 
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I 

Figure 1. Problem definition 

where q is the scalar, and u and Y are the two velocity components. After some manipulations, this 
linear equation can be written in the following form: 

The boundary conditions considered throughout this work are zero gradients of the variable 
q along each boundary. Note that for divergence-free flow fields, the RHS of equation (2) 
vanishes. 

Equation (2) is ideal for examining the performance of various schemes for discretizing 
convective terms, since it describes problems with pure convection. Thus, this paper deals with 
solutions of equation (2) in different flow conditions and with various initial conditions for the 
scalar q. 

Numerical procedure 

equation (2) over a finite volume we obtain 
Equation (2) is solved using the standard finite volume method. Therefore, by integrating 

The integral on the LHS of equation ( 3 )  is calculated by assuming a uniform value of q over the 
control volume. Also, for the calculation of the integrals on the RHS we assume uniform fluxes 
along each cell face. Then, for a constant grid spacing in each direction we obtain 

Integrating equation (4) in time and using a simple explicit formulation, we obtain 
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where F is the flux of q, At is the time step, and the superscript n denotes values at the previous 
time step. Note that this simple explicit temporal scheme could potentially affect the performance 
of any spatial discretization scheme in time-dependent problems. In the latter, accuracy does not 
only depend on the spatial formulation but also on the manner in which the rate of change term is 
represented. Since this work is addressing the evaluation of alternative spatial discretization 
schemes, low Courant numbers have been maintained in all test cases to minimize the impact of 
the choice of time discretization scheme. 

DIFFERENCING SCHEMES 

Schemes without j u x  limiters 

At the east cell face, for example, the flux is calculated as follows: 
First-order upwind scheme (FOU) .  This scheme assumes the 'upwind' values of g at a cell face. 

where the superscript n has been omitted for notation convenience. Note that when ui+ 1/2, is 
positive, the second term becomes zero, and the value of qi, is used. In the opposite case, i.e. when 
ui+ 

The upwind scheme has two advantages which have made it the most widely used scheme: (i) it 
produces stable and oscillation-free solutions and (ii)it is very easy to implement in a code. 
However, it has a serious drawback. The omitted leading term in equation (6) is of the type 
a z u / a x 2 ,  which represents diffusion. In many flow conditions, and especially in high-Re flows, 
this omitted diffusion-like term becomes large and degrades the accuracy of the results. Although 
the accuracy of the results can be improved by increasing the resolution of the grid, this may be 
impractical for three-dimensional applications. 

Second-order upwind scheme ( S O U ) .  The accuracy of the classical first-order upwind scheme 
can be improved by retaining in the calculations the second-order derivatives which were omitted 
in eqaution (6). The resulting SOU scheme6 is considerably more accurate than the FOU scheme. 
The flux terms are now formed as follows: 

is negative, the value of qi+ 1, is used. Thus, this scheme is called upwind. 

The SOU scheme is somewhat more complex than the FOU scheme, since it uses a four-point 
stencil for calculating the fluxes. However, it is also more accurate, since the leading truncation 
error in equation (7) is a third-order derivative term; thus, the SOU scheme introduces less 
artificial diffusion in the solution. Unfortunately, this third-order derivative term can potentially 
cause oscillations in the solution, especially when discontinuous gradients of the variable g exist. 

Quadratic upstream-biased scheme (QUICK). The QUICK scheme7 is a third-order upwind 
scheme. This scheme is upwind-biased, since it calculates fluxes using information not only from 
the upstream nodes but also from the first downstream node. At the east cell face, for example, the 
flux is formed as follows: 
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where CURVX is the curvature term given by 

CURVXi,j=qi+ 1 . j  - 2qi.j + qi- 1 , j .  (9) 

The Q U I C K  scheme is of the same order of complexity as the SOU scheme, since it also uses 
a four-point stencil for calculating the fluxes. However, increased accuracy is achieved by making 
the Q U I C K  scheme upwind-biased instead of fully upwind, as in the SOU scheme. The leading 
truncation term in equation (8) is a fourth-order derivative term, which is much less dissipative 
than the second-order dissipation term in the FOU scheme. 

Schemes with f lux limiters 

Van Leer's scheme (MPL) .  Van Leer's" MPL scheme is based on zone averages instead of 
grid point values, which is the case with the previous schemes. Assuming a piecewise linear 
distribution of the scalar q inside a zone, i.e. 

qi(x)=qi + x Aqi, (10) 

where overbars denote zone-averaged values, and positive u-velocity at the east cell face, the flux 
can be expressed as 

- 
where Aqij = (1/2) ( qi + 1, - qi - 1 ,  j ) .  When ui+ l iz ,  is negative, the flux is calculated using informa- 
tion from the i +  l zone: 

Van Leer introduced the idea of monotonicity by limiting the function in equation (10) to the 
values inside the range spanned by the neighbouring mesh averages, i.e 

- 
qi+ 1/2,j=qi, j++&i,jGqi+ l , j  (1 3) 

where q has been assumed to increase monotonically. Similar relations can be derived when 
q decreases monotonically. To prevent the introduction of new extrema in the solution, Van 
Leer's scheme limits the value of & to zero when q is not varying monotonically. These checks 
ensure oscillation-free solutions. The overall algorithm is second-order-accurate. 

Monotonic second-order upwind scheme (MSO U ) .  l4 developed a second-order mono- 
tonic scheme, which is based on an approximate Riemann solver. His original formulation is 
presented in incremental or fluctuation format rather than the classical numerical flux formula- 
tion. Sweby'* converted Roe's transfer function to a flux limiter. Thus, the S O U  scheme can be 
made monotonic following Sweby's procedure. The resulting monotonic second-order upwind 
(MSOU) scheme is fully upwind. The numerical fluxes are written in the following format: 
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where rij is the ratio of consecutive gradients, and qij is the flux limiter which corresponds to 
Roe’sI4 ‘superbee’ compressive transfer function. The resulting scheme is monotonic and does not 
allow the appearance of non-physical oscillations. 

SHARP scheme. Leonard” has presented a monotonic version of his earlier QUICK scheme. 
The new scheme, named SHARP, retains QUICK’S third-order accuracy. SHARP represents 
a new generation of multidimensional monotonic convective schemes based on non-linear 
characteristics in the so-called normalized variable diagram.” In the SHARP scheme, the 
calculation of fluxes is based on the following formulation: 

Fi+ 1/2, j = u i +  1/2, j(qi, j++CFCURVij), (21) 

CURVij=(qi+ 2, j-qi+ 1 ,  j- qi, j + qi- I ,  j)-sign(ui+ 112, j)(qi+ 2, j -%i+ I, j +  3qi, j-qi- I ,  j), (22) 

where 

where CF  is the curvature factor, being equal to 1/8 in the case of the QUICK scheme. This 
formulation automatically takes into account the direction of the velocity. 

The monotonicity is imposed by limiting the curvature factor. The algorithm begins by 
computing I q d  - qul and going immediately to QUICK if this absolute value is less than If 
not, the curvature factor is calculated as follows: 

for 4, < - 1: CF  = 0.125, (234 

for -l<ij,<O: CF=(05 +O~125~,)/(1-2ijc), (23b) 

for 0 < ij, < 0.3: (234 

for 0.3 < i j c  < 0.7: (234 
for 0.7 < i jc < 1: (234 

for 16ijc<1.5: CF=(ij,- 1)/(4ijc-2), (23f) 

for 1.5<ij,: CF=0.125, (23g) 

CF  = [ ijf - (1 + i j c ) (  i j c  - 0.5) - ijE”(1- 4,) ”’]/(1- 2ijC)’, 

CF  =0.125 - 0.2609( ij, - 1.5) + 0.1 361 3 (4, - 0.5) ’, 

C F  = [ ijf -( 1 + i j c ) (  4, -0.5) - i j E ” (  1 - 4,) 3’2]/( 1 - 24“,)’, 

where ij,, the normalized variable at point (i, j ) ,  is defined by 

and the subscripts u, c and d denote the upstream, central and downstream nodes, respectively. 
The above formulation can be programmed using Block-IF statements. For scalar machines it 
does not require considerably more computer time than any standard formulation. However, in 



EVALUATION OF HIGH-ORDER ACCURACY SCHEMES 937 

vector architectures such as the one of the Cray-Y/MP supercomputer, the above Block-IF 
statements cause vectorization difficulties. While the current version 5.0 of the cft77 compiler on 
the Cray systems can vectorize Block-IF statements, the resulting code modules are not fully 
optimized. 

EXAMPLES 

Rotatiori of a cone-shaped scalar field 

A very good test for the various schemes is the rotation of a cone-shaped scalar field used in 
several s t ~ d i e s . ' ~ , * ~ - ~ ~  In this test, a scalar 'cone' field is advected around by a stationary (in 
time) velocity field. The scalar field is named so because, when the field value is plotted in the third 
dimension, it appears as an inverted cone. The size of the domain is 1 unit by 1 unit and the 
angular velocity o = 2.0 units. The two-dimensional (2D) schematic of the problem is shown in 
Figure 2(a); a 3D perspective view of the initial cone field is plotted in Figure 2(b). The maximum 
and minimum values of the field were qmax = 10 and qmin = 0, respectively. The maximum Courant 
number was approximately equal to 0.1, and one full rotation around the centre of the domain 
corresponded to 3140 iterations (i.e. time steps) on a 64 x 64 grid. 

The results obtained after one revolution are summarized in Table I. Two grids have been used, 
a coarse one (32 x 32) and a fine one (64 x 64). Three parameters are tabulated: (i) the maximum 
field value, (ii) the minimum field value and (iii) the RMS error, defined as follows: 

JCCij(qi ,  j predicted - qi, j exact)'] RMS = 
number of nodes 

The minimum and maximum values show how well each scheme is capturing the steep gradients 
which exist in the scalar field. The RMS error, on the other hand, reflects the overall performance 
of each scheme. Useful conclusions can be drawn by simultaneously examining Table I and 
Figures 3(a)-3Cf), where the solution from each scheme is plotted. It is immediately noticed that 

(-0.5, 0.5)  (0.5, 0 .5 )  INITIAL C O N D I T I O N S  

FLOW( (O., 0 0.1 

.0.5, -0 .5)  (0 .5,  -0.5) 

(6) (4 
Figure 2. (a)  Two-dimensional schematic of the solid-body rotation test and (h) three-dimensional perspective of the 

initial scalar field 



938 P. TAMAMIDIS AND D. N. ASSANIS 

FOU SCHEME MPL SCHEME 

SOU SCHEME MSOU SCHEME 

QUICK SCHEME SHARP SCHEME 

Figure 3(a)-( f). Three-dimensional perspective plots of the scalar fields in the solid-body rotation test 

the solution from the FOU scheme is extremely inaccurate. The other non-monotonic schemes, 
i.e. SOU and QUICK, produce results with strong oscillations. Nevertheless, the specific pattern 
of the oscillations is quite different between the SOU and the QUICK schemes. In the former 
scheme, the oscillations are leading the cone, while for the latter scheme the oscillations are 
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Table I. Performance of the various discretization schemes in the solid-body rotation test 

Scheme 

32 x 32 grid 64 x 64 grid 

Max. Min. RMS error Max. Min. RMS error 

FOU 
sou 
QUICK 
MPL 
MSOU 
SHARP 

0.477 0000 0.672 0,938 OQOO 0.642 
0.83 1 - 0.030 0.642 1673 - 0.027 0.581 
4.284 -0751 0.472 8.910 - 1.324 0.261 
2.410 OGOO 0.505 5.583 O.Oo0 0.263 
3.356 0.000 0421 8.242 O.Oo0 0.110 
2.595 - 0.002 0497 6.300 - 0.006 0.215 

forming a ‘wake’ region just behind the cone. Also, the amplitude of the oscillations produced by 
QUICK is larger than the one produced by SOU. 

On the other hand, the flux-limiting schemes, namely MPL, MSOU and SHARP, dramatically 
improve results compared to the schemes without flux limiters. Clearly, MSOU captures the 
maximum value of the field more closely than the other schemes. Next in ranking is Leonard’s 
SHARP scheme, followed by the MPL scheme. The RMS error produced by MSOU on the 
coarse grid is approximately 20% smaller than the ones produced by MPL and SHARP. On the 
fine grid, the solution predicted from MSOU has 139 and 95% smaller RMS errors than MPL 
and SHARP, respectively. It should be noted here that SHARP introduced a minimum value of 
very small, negative magnitude. This could potentially cause problems if the advected variable 
has to be physically positive. Thus, SHARP is not strongly monotonic, but it is rather weakly 
monotonic. In contrast, MSOU and MPL did not introduce any negative or positive minima in 
the solution. The results clearly indicate that the MSOU scheme is to be preferred in this 
benchmark problem. 

Advection of a square-shaped scalar jield 

The next test case is the advection of a square-shaped scalar field. It is selected because it 
presents an increased number of discontinuities from the previous example. According to Amsden 
et u E . , ’ ~  this test is so severe that it may even exaggerate many of the shortcomings of the various 
schemes. In this test, a scalar square field is advected by a fixed (with time) uniform velocity field, 
directed at a 45” angle with respect to the mesh directions. The domain space is 6 x 6 units, while 
the size of the square field is 1.5 x 1.5 units. The 2D schematic of the domain is shown in 
Figure 4(a) and a 3D perspective view of the initial square field is plotted in Figure 4(b). The 
maximum and minimum values of the field were qmax = 10 and qmin = 0, respectively. The field was 
advected for a length equal to 3.95 units from its initial location to the opposite corner of the 
domain. The u and v velocities were both equal to 1 unit. The Courant number was approxim- 
ately equal to 019. The required time for this transport was equivalent to 140 time steps on 
a 40 x 40 grid. 

Results for two grids of 40 x 40 and 80 x 80 cells are presented in Table 11. Three parameters are 
reported: (i) the maximum field value, (ii) the minimum field value and (iii) the RMS error. 
Figures 5(a)-5( f)  show 3D perspective plots of the scalar field obtained using the various schemes 
on the coarse grid. These plots exhibit trends similar to the previous test case. SOU and QUICK 
produced results with spurious oscillations, which were more pronounced with QUICK. The 
monotonic schemes noticeably improved the results. MSOU exactly captured the maximum field 
value, with the RMS error of its solution being the smallest among the solutions produced by the 
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(-3.0, 3.0) I N I T I A L  CONDITIONS 

4 

(4 VJ) 

Figure 4. (a) Two-dimensional schematic of the 'square' scalar field test and (b) three-dimensional perspective of the 
initial scalar field 

Table 11. Performance of the various discretization schemes in the square-field transport test 

40 x 40 grid 80 x 80 grid 

Scheme Max. Min. RMS error Max. Min. RMS error 

FOU 
sou 
QUICK 
MPL 
MSOU 
SHARP 

6.257 0.000 1.445 8,526 O~OOO 1.289 
16.356 -3.580 1-268 18.880 -5.575 1.329 
18.808 -5.881 1.737 35.471 -21.092 3.366 
9.973 0.000 0.936 10~000 OQOO 0.717 

10~000 0.000 0.855 10~000 0.OOO 0.537 
10.219 -0'440 0.948 10.892 - 1.373 0.652 

various schemes on both grids. MPL also produced very good results, with 9 and 33% larger 
RMS errors than MSOU's, on the coarse and fine grids, respectively. SHARP performed less 
satisfactorily in this test problem, with its predictions being up to 21 YO less accurate than 
MSOUs on the fine grid. Also, SHARP failed to give oscillation-free results; small-magnitude 
oscillations, which were stronger than in the previous test case, persisted. Considering the quality 
of the results obtained by each scheme. MSOU is the most accurate scheme in this test problem. 

Mixing of a hot with a cold front 

This problem addresses the formation of cold and warm fronts in a two-dimensional setting. 
Beginning with a narrow region of high gradients ( a front), a fixed (in time) rotational velocity 
field will act to twist the front in a manner similar to that observed on daily-weather maps.29 The 
problem has the following analytical solution: 

q ( x , y ,  t)=-tanh , 
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FOU SCHEME 
M A X  = 0 6258Eb01 
M I N  * 0 0000Et00 

SOU SCHEME 
npix I 0 lb36E102 
H ~ N  = -0.3501€*01 

QUICK SCHEME 
R I X  i 0.lBBlE.02 
N I N  i -0 5881€+01 

MPL SCHEME 

n l N  = 0 0000E-00 
HPIY i I) 991AE101 

SHARP SCHEME 
nax i 0 1022E.02 
N I N  i -0.4404Et00 

Figure 5. (a)-( f). Three-dimensional perspective plots of the solutions in the 'square' scalar field test 



o being the frequency, ut = sech' ( F )  tanh( F )  is the tangential velocity around the centre, and 
utmax is the maximum tangential velocity, which is set equal to 0.385 for this problem. The initial 
conditions at t = O  are obtained from equation (26). Thus, the initial condition is a function of 
y only. The centre of the velocity fieId is at (x=O, y=O). The velocity components u and u are 
obtained using the following equations: 

u ( x ,  y)=---, V I  Y 
'Jtmax 

(29) vt x 
Utmax r 

v ( x , y ) = - - .  

The 2D plot of the initial scalar field, with the velocity field superimposed, is shown in 
Figure 6(a). The maximum and minimum values of the field were qmax = 0.964 and qmin = -0,964, 
respectively. Solid lines indicate positive values of the scalar variable, while dashed lines indicate 
negative values. The initial scalar field varies gradually from positive values at the bottom of 
Figure 6(a) to negative values at the top. Physically, positive values correspond to a warm front 
and negative values to a cold front. The flow field will twist the fronts and, after four time units, 
the exact analytical solution will be the one shown in Figure 6(b). 

Five different grid sizes were used, starting from a 16 x 16 coarse grid and ending with 
a 256 x 256 fine grid. The RMS error of each scheme is shown in Table 111 as a function of grid 
size. Maximum and minimum values are not reported since no scheme introduced oscillations in 
the solution. Figures 7(a)-7( f )  compare the calculated solutions from each scheme after four time 
units on the 32x32 grid. Clearly, the FOU solution shows the worst agreement with the 

INITIAL CONOITIONS 
M I N  = - 0 . 9 6 4 0 E c 0 0  

I"" ~ ' ' ' ' ~ r ' ' ' ' ' ' ~  . . . . . . . . . . . . . . . . . .  I I ) ' " " "  "4 . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  
1__1__L_i__l__:_: ..__. :..; .:-. __i__i_i_i__i_~ ..L_,_. .-..-. _...._ . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . .  

MAX = 0 . 9 6 4 0 E c 0 E  

(a) 

EXACT SOLUTION 

.............. ........... -. _ _ _  ............ ............... _*-, _.-__ ..................... ........ .. :..5::::;;::;;::;-.. ... ..:--.=- ..... ... 
............. j 

................... 

Figure 6. (a) Initial conditions in the mixing test and (b) exact analytical solution 
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FOU SCHEME 

- 1 1 1 1 1 1 1 1 1 1 1 1  

................................. .: 

SOU SCHEME 

... 

Q U I C K  SCHEME 

......... ................................... 

MPL SCHEME 

.................. .............................. 

MSOU SCHEME 

......................... - ............................. 

SHARP SCHEME 

r 7  

Figure 7(a)+f). Contour plots of the scalar fields in the mixing test 
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Table 111. RMS errors ( x  100) of the various discretization schemes in the mixing test 

Scheme 16x 16 32x32 64x64 128x128 256x256 

FOU 
sou 
QUICK 
MPL 
MSOU 
SHARP 

9.53 7.89 6.10 4.33 2.18 
7.92 5.31 2.45 0.64 0.16 
6.70 3.96 1.23 0.32 0.08 
7.00 4.70 2.18 1.05 0.54 
6.76 4.26 1.27 0.39 0.14 
6.65 4-28 1.58 0.40 0.10 

analytical solution. The predictions improve by using higher-order schemes. As shown in 
Table 111, the most accurate results are obtained by QUICK on all grids. SHARP gives somewhat 
less satisfactory results than QUICK. It is also found that MSOU improves the accuracy of the 
solution over SOU, by as much as 100% on a 64 x 64 grid, and as low as 14% on a 256 x 256 grid. 
Van Leer's MPL scheme gives less accurate results than its monotonic rivals, i.e. MSOU and 
SHARP. 

Useful conclusions regarding the actual order of accuracy of each scheme can be drawn from 
Table 111. This table is generated by reducing the size of the grid spacing by 50% from run to run, 
while keeping At constant, until the reduction in the RMS error exhibits a clear trend. The highest 
Courant number was approximately equal to 0.16 on the 256 x 256 grid. The fourfold reduction 
of the RMS error as the mesh interval is reduced by a factor of two (from a 128 x 128 to 
a 256 x 256 grid) shows that QUICK is actually a second-order scheme. On the other hand, the 
first-order accuracy of FOU and the second-order accuracy of SOU are verified. The monotonic 
schemes, which are strongly non-linear, do not follow their nominal order of accuracy. SHARP 
retains QUICKS second-order accuracy, MSOU approaches second-order accuracy and MPL 
behaves as a first-order scheme. Nevertheless, MPL is four times more accurate than the classical 
first-order FOU scheme. Overall, however, QUICK is the most satisfactory scheme for this 
problem. 

Deformation of a cone-shaped scalar jield 

In the previous model problems, the schemes were evaluated in flow fields that were either 
uniform or smooth. In non-smooth or deformational flows, however, significant differences 
between schemes can be found, since the scheme monotonicity could depend on the structure of 
the velocity field. The deformational flow problem was initially defined by Smolarkiewicz." In 
our version of this problem, a fixed (in time) flow field is defined by the stream function 

(30) 
1 

47L 
$( x, y )  =- sin [4n(x + 0 9 1  cos [47r(y + 0-5)]. 

The domain is a square of side equal to one unit, and with the origin of the co-ordinate system 
located at its centre. Isolines of the stream function are shown in Figure 8(a), with the initial scalar 
distribution superimposed. The flow field consists of sets of symmetrical counterrotating vortices, 
as shown in Figure 8(b). Each vortex occupies a square of 025 units. The initial scalar distribu- 
tion is a cone of radius 0.15 units, height equal to 1 unit, and it is centred at the origin of the 
co-ordinate system. The initial scalar distribution is non-zero over six vortices, and most of the 
cone's base area is included within the area of the two central vortices. Fluid elements are 
constrained to move along stream lines and, thus, cannot escape from the binding vortex in which 
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Figure 8. (a) Stream function contours and (b) velocity vectors in the deformation test. The initial scalar field is 
superimposed 

Table IV. Performance of the various discretization schemes in the 
deformational flow problem 

100 x 100 grid 

Scheme Max. Min. CPU ratio 

FOU 
sou 
QUICK 
MPL 
MSOU 
SHARP 

0.127 0.000 1 a0 
0.199 -0.013 1.12 
0.226 - 0.009 1.18 
0.168 0000 1.62 
0 .20  0.000 1.50 
0.172 - 0~000009 7.75 

they are initially found. Therefore, at any time, the scalar distribution will be zero everywhere 
except in the six vortices where it is initially non-zero. One grid size consisting of 100 x 100 nodes 
has been used. The maximum Courant number was equal to 0.2 and the time integration 
consisted of 4000 iterations. 

Figures 9(a)-9( f) illustrate the solution obtained using the various schemes. Solid lines indicate 
positive values of the scalar variable, while dashed lines indicate negative values. The maximum 
and minimum values are summarized in Table IV. Clearly, only the FOU, MPL and MSOU 
schemes predicted physically plausible solutions, where values of the scalar were restricted within 
the six central vortices. SOU and QUICK produced strong oscillations and overshoots, which 
resulted in non-zero scalar distributions over the entire domain. SHARP also failed to produce 
oscillation-free results, as seen in Figure 9( f). The MPL and MSOU results are comparable, with 
MSOU predicting somewhat steeper profiles. 

The required computational effort associated with each scheme is shown in Table IV. The 
numbers have been non-dimensionalized with respect to the computer time required by the least 
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FOU SCHEME MPL SCHEME 

SOU SCHEME 

(c) 

QUICK SCHEME 

MSOU SCHEME 

-7 

(d) 

SHARP SCHEME 

Figure 9. (a)-(f). Contour plots of the scalar fields in the deformation test 
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expensive FOU scheme. Apart from accuracy considerations, CPU results clearly prohibit 
SHARPs use since it requires about eight times more computer time than FOU. On the other 
hand, MSOU and MPL require about 50% more computer time than FOU, which makes them 
attractive choices, especially considering their accurate performance. SOU and QUICK con- 
sumed just about 15% more CPU time than FOU, but with poor results, as stated above. Based 
on accuracy and CPU considerations, MSOU is the clear winner in this test case. 

CONCLUSIONS 

Several high-order-accuracy schemes, with and without flux limiters, have been evaluated in four 
time-dependent, linear problems with pure convection. The predictive capabilities of each scheme 
have been assessed in terms of a number of sensible criteria. While the ultimate selection of 
a particular scheme should be based on the nature of a given problem, this work has produced the 
following guidelines for the selection process: 

(i) The classical FOU scheme produces oscillation-free results but is very inaccurate, espe- 
cially in problems involving steep gradients. 

(ii) The SOU and QUICK schemes yield improved results for problems not involving 
discontinuous, or nearly discontinuous, profiles. Despite the finding that QUICK is 
actually second-order, it is more accurate than SOU. However, in problems where 
discontinuous profiles exist, QUICK introduces stronger oscillations than SOU. 

(iii) Although MPL is found to be first-order, it improves considerably the accuracy of the 
solution in problems with discontinuous gradients of the advected variable. The small 
increase in its computer cost over FOU, along with its good accuracy, renders MPL 
a good choice for such problems. 

(iv) MSOU’s behaviour is nearly second-order in accuracy. Nevertheless, MSOU is the most 
accurate scheme in problems involving discontinuous gradients of the advected variable. 
Furthermore, taking into consideration its high computational efficiency, MSOU appears 
to be the best choice for problems with discontinuities. 

(v) The SHARP scheme retains QUICK‘S second-order of accuracy. Although it allows small- 
amplitude oscillations in the solution of problems with discontinuous gradients, it can be 
very appropriate in flows where nearly continuous gradients exist. However, SHARPs 
high computational cost in vector machines, such as the Cray-Y/MP, could prohibit its 
usage in real-life applications. 
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